skip to main content


Search for: All records

Creators/Authors contains: "Schmidt, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ultrafast laser pulse beams are four-dimensional, space–time phenomena that can exhibit complicated, coupled spatial and temporal profiles. Tailoring the spatiotemporal profile of an ultrafast pulse beam is necessary to optimize the focused intensity and to engineer exotic spatiotemporally shaped pulse beams. Here we demonstrate a single-pulse, reference-free spatiotemporal characterization technique based on two colocated synchronized measurements: (1) broadband single-shot ptychography and (2) single-shot frequency resolved optical gating. We apply the technique to measure the nonlinear propagation of an ultrafast pulse beam through a fused silica window. Our spatiotemporal characterization method represents a major contribution to the growing field of spatiotemporally engineered ultrafast laser pulse beams.

     
    more » « less
  2. We generalize our method for propagating spatially chirped Gaussian beams to properly calculate the evolution of geometric spectral phase through a lens. By expanding the spectral phase around the local central frequency, we analytically calculate the spatio-temporal field. Applications to intentionally detuned pulse compressors are discussed. 
    more » « less
  3. Abstract

    The 22 July 2020 Mw7.8 Simeonof earthquake was a deep megathrust event that ruptured along the Shumagin segment of the Alaska‐Aleutian subduction zone. This earthquake occurred ∼250 km from a seafloor geodetic GNSS‐Acoustic site IVB1, where we observed a velocity of 3.78 ± 1.15 cm/yr with the down‐going slab prior to the earthquake followed by 0.6 ± 0.7 eastward and −15.5 ± 0.8 cm northward coseismic offset. We computed a slip model of the coseismic rupture using the static offset at IVB1 alongside regional continuous GNSS and strong motion stations. The small static horizontal offset at the site precludes significantly shallower rupture than previously inferred from terrestrial observations, confirming that the Simeonof earthquake was a deep megathrust earthquake. The observed site velocity implies partial locking prior to the earthquake, implying significant shallow strain accumulation such that the small coseismic offset is unlikely to have relieved all of the accumulated strain since the last coseismic rupture.

     
    more » « less
  4. De Mitri, I. ; Barbato, F.C.T. ; Boncioli, D. ; Evoli, C. ; Pagliaroli, G. ; Salamida, F. (Ed.)
    The Pierre Auger Observatory (Auger) and the Telescope Array Project (TA) are the two largest ultra-high-energy cosmic ray observatories in the world. They operate in the Southern and Northern hemispheres, respectively, at similar latitudes but with different surface detector (SD) designs. This difference in detector design changes their sensitivity to the various components of extensive air showers. The over-arching goal of the Auger@TA working group is to cross-calibrate the SD arrays of the two observatories in order to identify or rule out systematic causes for the apparent differences in the flux measured at Auger and TA. The project itself is divided into two phases. Phase-I finished in 2020 and consisted of a station-level comparison facilitated by the deployment of two Auger stations, one prototype station with a single central PMT and a standard Auger station, in the middle of the TA SD near the Central Laser Facility, along with a modified TA station to provide external triggers from the TA SD. This provided the opportunity to observe the same extensive air showers with both Auger and TA detectors to directly compare their measurements. Phase-II of Auger@TA is currently underway and aims at building a self-triggering micro-Auger-array inside the TA array. This micro-array consists of eight Auger stations, seven of which use a 1-PMT prototype configuration and form a single hexagon with a traditional 1.5 km Auger spacing. The 8th station is of the standard Auger 3-PMT configuration and is placed at the center of the hexagon, along with a TA station to form a triplet. Each Auger station will also be outfitted with an AugerPrime Surface Scintillator Detector. A custom communication system using readily available components will be used to provide communication between the stations and remote access to each station via a central communications station. The deployment of the micro-array took place at the end of September 2022. A simulation study was carried out to gauge the expected performance of the Auger@TA micro-array and to derive trigger effi ciencies and event rates. 
    more » « less
  5. In fluid physics, data-driven models to enhance or accelerate time to solution are becoming increasingly popular for many application domains, such as alternatives to turbulence closures, system surrogates, or for new physics discovery. In the context of reduced order models of high-dimensional time-dependent fluid systems, machine learning methods grant the benefit of automated learning from data, but the burden of a model lies on its reduced-order representation of both the fluid state and physical dynamics. In this work, we build a physics-constrained, data-driven reduced order model for Navier–Stokes equations to approximate spatiotemporal fluid dynamics in the canonical case of isotropic turbulence in a triply periodic box. The model design choices mimic numerical and physical constraints by, for example, implicitly enforcing the incompressibility constraint and utilizing continuous neural ordinary differential equations for tracking the evolution of the governing differential equation. We demonstrate this technique on a three-dimensional, moderate Reynolds number turbulent fluid flow. In assessing the statistical quality and characteristics of the machine-learned model through rigorous diagnostic tests, we find that our model is capable of reconstructing the dynamics of the flow over large integral timescales, favoring accuracy at the larger length scales. More significantly, comprehensive diagnostics suggest that physically interpretable model parameters, corresponding to the representations of the fluid state and dynamics, have attributable and quantifiable impact on the quality of the model predictions and computational complexity.

     
    more » « less
  6. High-intensity pulse-beams are ubiquitous in scientific investigations and industrial applications ranging from the generation of secondary radiation sources (e.g., high harmonic generation, electrons) to material processing (e.g., micromachining, laser-eye surgery). Crucially, pulse-beams can only be controlled to the degree to which they are characterized, necessitating sophisticated measurement techniques. We present a reference-free, full-field, single-shot spatiospectral measurement technique called broadband single-shot ptychography (BBSSP). BBSSP provides the complex wavefront for each spectral and polarization component in an ultrafast pulse-beam and should be applicable across the electromagnetic spectrum. BBSSP will dramatically improve the application and mitigation of spatiospectral pulse-beam structure.

     
    more » « less
  7. Abstract

    The boundary between the overriding and subducting plates is locked along some portions of the Cascadia subduction zone. The extent and location of locking affects the potential size and frequency of great earthquakes in the region. Because much of the boundary is offshore, measurements on land are incapable of completely defining a locked zone in the up‐dip region. Deformation models indicate that a record of seafloor height changes on the accretionary prism can reveal the extent of locking. To detect such changes, we have initiated a series of calibrated pressure measurements using an absolute self‐calibrating pressure recorder. A piston‐gauge calibrator under careful metrological considerations produces an absolutely known reference pressure to correct seafloor pressure observations to an absolute value. We report an accuracy of about 25 ppm of the water depth, or 0.02 kPa (0.2 cm equivalent) at 100 m to 0.8 kPa (8 cm equivalent) at 3,000 m. These campaign survey‐style absolute pressure measurements on seven offshore benchmarks in a line extending 100 km westward from Newport, Oregon from 2014 to 2017 establish a long‐term, sensor‐independent time series that can, over decades, reveal the extent of vertical deformation and thus the extent of plate locking and place initial limits on rates of subsidence or uplift. Continued surveys spanning years could serve as calibration values for co‐located or nearby continuous pressure records and provide useful information on possible crustal deformation rates, while epoch measurements spanning decades would provide further limits and additional insights on deformation.

     
    more » « less
  8. B. Lee, C. Mazzali (Ed.)
    We present a ptychographic phase retrieval algorithm which solves the square root problem in second order pulse measurement techniques and reconstructs the fields of multiple incoherent pulses simultaneously from a single dispersion scan trace. 
    more » « less